This calculation policy intends to grow and build progressively through each year group. Each stage is carefully planned and the vast majority of children should be able to demonstrate at some point within the correct year group that they have a good understanding of the outlined method.

By the end of year 6, children will have a range of calculation methods both written and mental - selection will depend on the numbers involved.

Children should not move on to the next stage if they are not ready or if they aren't confident. If parents or teachers have concerns about how a child is progressing through the different stages, please speak to the maths leader.

Images and models shown in this policy are still used in later year groups; this policy shows the first point at which these images are introduced and taught.

Addition

Addition and subtraction are inverse operations. Right from the start children should be taught these as related operations. There are four number sentences (two using + and two using -) which can be written to express the relationship between 4 and 6 and 10. It is key to a good understanding of addition and subtraction that $6+[]=10$ and 10-6 = [] are seen as ways of expressing the same question.

Reception - While doing simple calculations, you may see some of these formal and informal methods being used.

Working towards the following Early Learning Goals:

Number:

- Have a deep understanding of number to 10 , including the composition of each number
- Automatically recall number bonds to 5 and some number bonds to 10

Numerical Patterns:

- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity

Year 1 - Children use the below methods when formally and informally carrying out calculations.

Year 2 - Children should use the below methods to support their fluency development in conjunction with lots of mental maths in class.

Using Number Facts

Children should have the opportunity to practise number facts (and secure them) so they can use them with fluency when completing calculations.

* Know pairs of numbers which make the numbers up to and including 10. E.g. $8=4+4.3+5,2+6,1+7$ and $10=5+5,4+6,3+7,2+8,1+9,0+10$
* Use of patterns of known facts, e.g. $6+3=9$. Se we know $36+3=39,66+3=69.53+6=59$
* Bridging 10, e.g. 57+5 as 57 add 3, then add 2 more

Year 3 - Introduction and embedding of	hod	
$\begin{aligned} & 436+137=573 \\ & 40030 \quad 6 \\ & \begin{array}{l} 400307 \\ 100+60+13 \end{array}=573 \end{aligned} \begin{array}{r} 436 \\ +137 \\ \hline 5003 \\ 60 \\ 500 \\ \hline 573 \\ \hline \end{array}$	$\begin{array}{r} 436 \\ 137 \\ \hline 573 \\ \hline 1 \end{array}$ $\begin{array}{r} 26 \\ 35 \\ +17 \\ \hline 78 \\ \hline 1 \end{array}$	$\begin{aligned} & \frac{3}{5}+\frac{2}{5}=\frac{5}{5} \\ & \frac{5}{5}=1 \end{aligned}$
Two methods of expanded addition. Both are acceptable and both having different benefits for leading into the most efficient method. Do not teach both, choose one and stick to it (only change if children have difficulty with one method after repeated attempts to practice - then try the other)	By the end of year 3, children should be able to use compact column addition for: - Two or more 3-digit numbers - Towers of 2-digit numbers	\quad Fractions *Recognise complements of any fraction to 1

Year 5				
$\begin{array}{r} 14563 \\ +26755 \\ \hline 41318 \\ \hline 111 \end{array}$	$\begin{array}{r} 4654 \\ +2378 \\ 1949 \\ \hline 8981 \\ \hline 112 \end{array}$	$\begin{array}{r} 15 \cdot 68 \\ +27 \cdot 86 \\ \hline 43 \cdot 54 \\ \hline 11 \cdot 1 \end{array}$		$\begin{aligned} & \frac{1}{4}+\frac{3}{8} \\ = & \frac{2}{8}+\frac{3}{8} \\ = & \frac{5}{8} \end{aligned}$
Compact column addition (expanded column may still be used for children who really need it - particularly for money/decimals) - to add pairs of 5-digit numbers - towers of several larger numbers - decimal numbers with up to 2 places - Adding several amounts of money				-Fractions Adding fractions with related denominators (see example)

Year 6-Secure Procedural Flue			
$\begin{array}{r} 236452 \\ +267554 \\ \hline 5014006 \\ \hline 1111 \end{array}$	$\begin{array}{r} 15 \cdot 68 \\ +27 \cdot 86 \\ \hline 43 \cdot 54 \\ \hline 11 \cdot 1 \end{array}$		$\begin{aligned} & \frac{3}{4}+\frac{1}{3} \\ = & \frac{9}{12}+\frac{4}{12} \\ = & \frac{13}{12} \\ = & 1 \frac{1}{12} \end{aligned}$
Compact Column Addition * for adding several large numbers (in line with Year 5) * for decimals with up to two places (including money)			Fractions * Adding fractions with unlike denominators

Subtraction

Addition and subtraction are inverse operations. Right from the start children should be taught these as related operations. There are four number sentences (two using + and two using -) which can be written to express the relationship between 4 and 6 and 10. It is key to a good understanding of addition and subtraction that $6+[]=10$ and 10-6 = [] are seen as ways of expressing the same question.

Reception - While doing simple calculations, you may see some of these formal and informal methods being used.

$$
5-3=2
$$

Real life counting of objects

Working towards the following Early Learning Goals:

Number:

- Have a deep understanding of number to 10 , including the composition of each number
- Automatically recall number bonds up to 5 (including subtraction facts)

Numerical Patterns:

- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity

Year 1 - Children use the below methods when formally and informally carrying out calculations.

100 Square									
1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	4	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	50
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	7	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	${ }^{9}$	94	95	96	97	98	ง9	100
						1			
				-					

Moving Around in 10s and 1s

* Knowing 1 less or 10 less than any given number

Use of a number square to partition a number to subtract.
For example: 23-11 = [] , partition eleven into 10 and 1.
Then subtract 10 and then subtract 1.
This method is NOT a substitute for practising counting back in 10s and 1 s from any given number.

Using Number Facts

Children should have the opportunity to practise number facts (and secure them) so they can use them with fluency when completing calculations.

* Know pairs of numbers which make the numbers up to and including 10. E.g. $10-6=4,8-3=5,5-2=3$ etc.
* Use of patterns of known facts, e.g. $9-3=6$. Se we know $39-6=33,69-6=63.89-6=83$
* Bridging 10, e.g. $52-6$ as 52 subtract 2 then subtract 4 more.

| Year 3 |
| :--- | :--- | :--- |

Year 4			
$\begin{aligned} & 765-138=627 \\ & 70050015 \\ & -1003088 \\ & \hline 60020 \\ & \hline \end{aligned}$	$\begin{array}{r} 16 \\ 165^{\prime} 4 \\ -\quad 329 \\ \hline 1325 \\ \hline \end{array}$		$\begin{gathered} \frac{6}{8}-\frac{2}{8}=\frac{4}{8} \\ \frac{4}{8}=\frac{1}{2} \end{gathered}$

Expanded Column Subtraction

* Ensure sound place value knowledge before moving onto Compact Column Subtraction

Year 5		
$\begin{array}{r} 3159 \\ 146813 \\ -10846 \\ \hline 03757 \\ \hline \end{array}$	$E 50-E 26 \cdot 77=E 23 \cdot 23$ $2 \cdot 67-2 \cdot 33=0 \cdot 34$	$\frac{7}{8}-\frac{3}{7}=\frac{25}{56}$ $\frac{49}{56}-\frac{24}{56}=\frac{25}{56}$
Compact Column Subtraction * for numbers with up to 5 digits	Consider self-selecting least error prone methods: * Counting up when dealing with money (including finding change) * Counting up to subtract decimal numbers	Fractions * Subtract fractions with unlike denominators

Year 6

Multiplication

Multiplication and division are inverse operations. Right from the start children should be taught these as related operations. There are four number sentences (two using x and two using \div which can be written to express the relationships between 5 and 9 and 45 . It is key to a good understanding of division that [] $\times 5=45$ and $45 \div 5=$ [] are seen as ways of expressing the same question.

Reception - While doing simple calculations, you may see some of these formal and informal methods being used.

Working towards the following Early Learning Goals:
Number:

- Automatically recall number bonds up to 5 and some number bonds to 10 , including double facts.

Numerical Patterns:

- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.

Year 1 - Children use the below methods when formally and informally carrying out calculations.

*solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Doubling and Halving

* Begin to know doubles of multiples of 5 to 100, e.g. double 35 is 70

Use Number Facts

* Know doubles to double 20

[^0]

Year 5			
$\begin{array}{r} 387 \\ \times \quad 6 \\ \hline 2322 \\ \hline 54 \end{array}$	$\begin{array}{r} 387 \\ \times \quad 14 \\ \hline 153428 \\ 3870 \\ \hline 4 \end{array} 4188$	$\frac{3}{4} \times 6=\frac{3}{4} \times \frac{6}{.1}=\frac{18}{4}=4 \frac{1}{2}$	$\begin{aligned} & E 8.65 \times 7=E 60 \cdot 5.5 \\ & \begin{array}{\|l\|l\|l\|l\|l} \hline X & E & 6 & 0.5 p \\ \hline 7 & E 56 & E 4 \cdot 20 & 35_{p} & =E 60.55 \end{array} \end{aligned}$
Short Multiplication * of 2 digit, 3 -digit and 4digit numbers by 1-digit numbers	Long Multiplication * of 2-digit, 3-digit and 4digit numbers by teen numbers	Fractions * Multiplying fractions by single-digit numbers	Decimals * Grid multiplication of numbers with up to 2 decimal places by a single-digit number(including money)

NB: Children should use grid method in year 6 ONLY as a default method if they struggle with long multiplication.
Remember that if a calculation has more steps then it is more error prone.

Division

Multiplication and division are inverse operations．Right from the start children should be taught these as related operations．There are four number sentences（two using x and two using \div which can be written to express the relationships between 5 and 9 and 45 ．It is key to a good understanding of division that［ ］$\times 5=45$ and $45 \div 5=$［ ］ are seen as ways of expressing the same question．

Reception－While doing simple calculations，you may see some of these formal and informal methods being used．

Children are given opportunities distribute objects equally．

Working towards the following Early Learning Goals：

Numerical Patterns：
－Explore and represent patterns within numbers up to 10 ，including evens and odds，double facts and how quantities can be distributed equally．

Year 1 －Children use the below methods when formally and informally carrying out calculations．

Share the bananas between 5 friends．

Sharing
＊solve one－step problems involving multiplication and division，by calculating the answer using concrete objects，pictorial representations and arrays with the support of the teacher．

Year 2		
		$30 \div 5=6$
Grouping ＊Relate division to multiplication by using arrays．	Sharing ＊Solve division problems by sharing into piles，e．g． $30 \div 5=6$ by creating 5 piles and sharing 30 in an equal fashion	Counting in steps（＇Clever＇counting） ＊Count backwards in 2 s ， 5 s and 10 s along a number line ＊Solve simple division problems using the clever counting method，e．g． $6 \div 5=30$ by hopping back along the line in 5 s ．
Doubling and Halving ＊Find half of numbers up to 40 ，including realising that half of an odd number gives a remainder of 1 or an answer containing a $1 / 2$ ． ＊Begin to know half of multiples of 10 to 100 ，e．g．half of 70 is 35 ．		
＊Know halves of even numbers to $24 \quad * \quad$Use Number Facts Know $2 x, 5 x, 10 x$ division facts		＊Begin to know 3x division facts

| Year 4 |
| :--- | :--- | :--- |
| * hopping back on an empty number line by taking out efficient chunks |
| of multiples of 10 |

Year 5	
$6 \longdiv { 1 2 6 4 }$	Chunking Ladder $\begin{aligned} & 10 \times 6=60 \\ & 20 \times 6=120 \\ & 30 \times 6=180 \\ & 40 \times 6=240 \\ & 50 \times 6=300 \\ & 60 \times 6=360 \end{aligned}$
Short Division * 3-digit and 4-digit numbers by single-digit numbers	Mental Method (using chunking) in Written Form * 3-digit number divided by single-digit numbers (including remainders) NB: A chunking ladder is encouraged to help children. They should start with 10x, 20x, 40x, 100x, 50x and move around smartly (by doubling and halving multiples etc.) to create the ladder. This relies on secure knowledge of how to multiply by 10 and 100.

Year 6		
$\begin{array}{r} 1264 \\ 6 \longdiv { 7 } 5 ^ { 3 } 8 ^ { 2 } 4 \end{array}$	$\begin{array}{r} 2551 \\ \begin{array}{r} 3765 \\ 3000 \\ \hline 765 \\ 750 \\ \hline 15 \\ 15 \end{array} \times 500 \\ \hline 00 \end{array}$	$\begin{aligned} & \frac{4}{5} \div 20=\frac{4}{5} \times \frac{1}{20}=\frac{4}{100}=\frac{1}{25} \\ & \frac{2}{3} \div \frac{5}{9}=1 \frac{1}{5} \\ & \frac{2}{3} \times \frac{9}{5}=\frac{18}{5}=1 \frac{1}{5} \end{aligned}$
* 3-dighort Divisision 4-digit numbers by single-digit numbers	Long Division using chunking (not standard long division) * 3 -digit and 4 -digit numbers by two-digit numbers	* Divide $\frac{\text { Fractions }}{\text { by whole numbers }}$ *Divide by fractions

[^0]: * $2 x, 5 x, 10 x$ tables, relating these to 'clever counting, in $2 s, 5$ s and 10 s, e.g. 5×10, and $10,20,30,40,50$ is five steps in the tens count

